Gainful utilisation of stone waste for brick manufacturing Industry

"Virtual workshop" on "Gainful utilisation of stone waste and Slurry"

Centre for Development Of Stones

Presented By: Prof. Sandeep Chaudhary Mr. Vivek Gupta

Department of Civil Engineering Indian Institute of Technology Indore

Ref: Gupta et al. (2021)

Contents

- Introduction
- Key challenge and Motivation
- Selected stone waste and conceptualisation of Bi-layered bricks
- Technical viability of colored composite mortars
- Economic feasibility of colored bi-layered bricks
- Step-by-step manufacturing method for colored bi-layered bricks
- Key take-away
- Opportunities for Industries

Introduction

Key challenges

Key challenges:

- Aesthetics of unfired bricks
- Search of a low cost raw material which fit into the budget of brick mixes (typically in the range of INR 1 – 1.5 per kg.)
- Economic competitiveness of proposed solution in the existing product range
- Manufacturing feasibility of proposed solution in existing industrial set up

How to improve the aesthetics of unfired bricks in low cost maintaining its sustainability?

Motivation for using stone waste

Stone wastes have inherent color

Stone wastes are originated from durable stones

Availability of dimensional stone wastes in huge quantity

Selected stone wastes from Rajasthan

Mix design for various colored geopolymer mortars

Mix	Solid precursor			Chemical binder				
	GGBS (g)	Stone waste (g)			NaOH solutio	on (g)	Na ₂ SiO	₃ solution (g)
M1	100	-	-		40			40
M2	50	S-I	50		Fine aggregate			
M3	50	S-II	50		Standard sand			
M4	50	S-III	50		Grade 1 (g)	Grade	e 2 (g)	Grade 3 (g)
M5	50	S-IV	50		100	1	.00	100

Specimen size: 50×50×50 mm cubic specimens Curing condition: For first 24 hours in drying oven at 50 °C Testing age: 3 days

Technical comparison of different colored composite mortars

Conceptualization of colored bi-layered bricks

9

Cost analysis of 10 mm thick top layer mortar

Raw material	Weight (kg)	Unit rate	Total Cost
		(In INR per kg)	(In INR)
GGBS	0.111	2.50	0.278
Stone waste	0.111	1.40#	0.155
River sand	0.111	1.65	0.183
Sodium hydroxide pellets*	0.010	50.0	0.500
Sodium silicate solution*	0.025	20.0	0.500
Total raw material cost (in INR)	1.616		

*For cost calculations, unit rates of commercial-grade sodium hydroxide pallets and sodium silicate solutions have been considered.

[#] While stone wastes are available free of cost, freight on delivery and other costs are considered in calculating the rates per unit

Economic feasibility of colored bi-layered bricks

Cost head	Fly ash bricks	Cost per brick	Bi-layered bricks	Cost per brick (In	
		(In INR)		INR)	
	Single layer (90 mm thick)		Bottom layer (80 mm thick)		
	Hydrated lime	1.35	Hydrated lime	1.20	
Deve meterial cost	Fly ash	0.42	Fly ash	0.37	
Raw material cost	Stone dust	1.01	Stone dust	0.90	
			Top layer (10 mm thick)		
			Colored composite	1.62	
Total raw material cost (A)		2.78	\rightarrow Increase in cost \rightarrow	4.09	
			(~INR 1.31)		
Other cost (B)		0.65		0.65	
Overall manufacturing cost		3.43	\rightarrow Increase in cost \rightarrow	4.74	
(A + B)			(~INR 1.31)		
Plaster and paint work cost		3.80		Nil	
Net cost per brick (A + <u>B</u> + C)		7.23	\rightarrow Saving per brick \rightarrow	4.74	
			(~INR 2.49)		

Step-by-step manufacturing method for colored bi-layered bricks

Ref: Gupta et al. (2021)

Actual bi-layered bricks produced at laboratory scale

Key take-away

- Manufacturing of bi-layered bricks is feasible in conventional plants (used for manufacturing single layered bricks) with minor alterations
- Bi-layered bricks are found to be economically viable. Use of proposed bi-layered bricks result in a net saving of INR 2.49 per brick surface of 90 mm × 190 mm; amounting to a cost saving of ~35 %.

Published article:

Gupta V, Pathak DK, Kumar R, Miglani A, Siddique S, Chaudhary S. Production of colored bi-layered bricks from stone processing wastes: structural and spectroscopic characterization. Construction & Building Materials, 278 (2021) 122339

Opportunities for Industries

- Opportunity available at IIT Indore for technology transfer of the developed products
- Opportunity for research collaboration in the field of gainful utilization of waste in pre-manufactured products

Glimpse of research facilities available at IIT Indore related to Pre-manufactured products

