





### **SAND- A CRITICAL RESOURCE**



- Sand:- An Important resource and one of the most exploited
- High consumption Low Production

- Massive impact on the planet and thus people's lives
- Extraction is causing Significant loss of biodiversity

Important to have Substitutes for Natural Sand

### Definition of Sand As per IS383(Rev 2016)



**Fine Aggregate** - Aggregate most of which **passes** 4.75 mm IS Sieve and contains only so much **coarser material** as permitted in **Clause 6.3.** 

- Natural Sand :- Fine aggregate resulting from the natural disintegration of rock and which has been deposited by streams or glacial agencies.
  This may also be called as uncrushed sand/River Sand
- Crushed Sand
  - Crushed stone sand Fine aggregate produced by crushing hard stone.
  - Crushed gravel sand Fine aggregate produced by crushing natural gravel
- Mixed Sand :- Fine aggregate produced by blending natural sand and crushed stone sand or crushed gravel sand in suitable proportions.
- Manufactured Sand (Manufactured Fine Aggregate): Fine aggregate manufactured from other than natural sources, by processing materials, using thermal or other processes such as separation, washing, crushing and scrubbing.

भारतीय मानक IS 383 : 2016 Indian Standard

Coarse and Fine Aggregate for Concrete — Specification

(Third Revision)

@ BIS 2016



भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS

मानक भवन, 9 बहादुरशाह ज़फर मार्ग, नई दिल्ली-110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI-110002

www.bis.org.in www.standardsbis.in

January 2016

Price Group 8







### Cl. 4.1 - Aggregates from Natural Sources













## CI. 4.2 - Manufactured Aggregates



New in 2016

Revision



# Crushed Sand Vs River (Natural) Sand



| Parameters        | Crushed Sand                                                                                                                | River Sand                                                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Process           | Manufactured by crushing naturally occurring rocks such as Granite, Basalt, Sandstone, Quartzite etc.                       | Naturally Available on river banks                                               |
| Shape             | Angular and has rougher texture. Angular aggregates demands more water. Water demand can be compensated with cement content | Smoother texture with better shape. Demands less water.                          |
| Moisture Content  | Moisture is available only in Water washed crushed-Sand                                                                     | Moisture is trapped in between the particles which is good for concrete purposes |
| Concrete Strength | Higher concrete strength compared to river sand used concrete                                                               | Lesser compared to Crushed Sand used concrete                                    |

## Crushed Sand Vs River (Natural) Sand



| Parameters   | Crushed Sand                                                                                                   | River Sand                                                                                                                              |
|--------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Eco Friendly | Causes less damage to environment as compared to River Sand, as it used by Repurposing a industrial By-Product | Extracting it from source is Harmful to environment causing Eco imbalances, reduced ground water level, and rivers water gets dried up. |
| Applications | Highly Recommended for RCC Purposes and Brick/Block Works.                                                     | Recommended for RCC, Plastering and Brick/Block Work.                                                                                   |



### **Crushed Sand**




#### Crushed Sand are generally produced :-

- by Use of modern Fixed shaft types of Cones & Vertical shaft Impactors(VSI)
- $\rightarrow$  All the gradations are present in the range of 0 ~ 4.75mm (5mm)
- Consistent Quality
- Ultra fines(Particles<150 microns) in excess of 20%, are generally washed/Classified</p>
- Washed

## **Producing Crushed Sand**



**Materials Processing** 



**Tertiary Crushing** 

Washing/ Classification

### **AutoSand Vs Vertical Shaft Impactor**



|                                    | AUTOSAND CONE CRUSHER  | VERTICAL SHAFT IMPACTOR |
|------------------------------------|------------------------|-------------------------|
| Feed Size                          | +5-63mm/GSB            | +5-20 mm                |
| Power                              | 160 KW                 | 220 KW/2X185 KW         |
| Output                             | 50TPH                  | 50TPH                   |
| % of 600 Microns                   | 40 %                   | 45%                     |
| % of -150 micron                   | 18%                    | 25%                     |
| Loss due to washing/Classification | Less                   | High                    |
| Particle Shape                     | ***                    | ***                     |
| <b>Operation Cost</b>              | $\star\star\star\star$ | $\star\star\star$       |

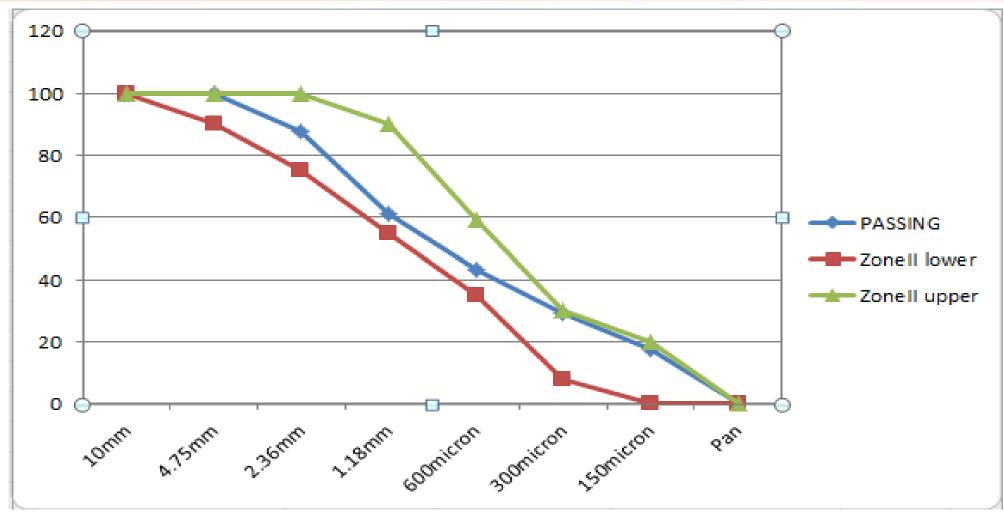
### **Terex Autosand Cone For Sand Production**





### **Terex Autosand Cone For Sand Production**








### **SAND FROM AUTOSAND VS IS383-2016**

(ZONE II GRADATION)





#### **Terex Autosand Cone For Sand Production**





Ref:BVIPL:FA: BL/1033/4/2017 Test Order dated: 11.04.2017

M/s. Terex India Pvt. Limited 5th Floor, West Wing, E-City Tower 2, No. 94/2, 95/2, Electronic City, Phase-1, Bangalore – 560 100. Date: 17.04.2017

REMARKS: The sample supplied satisfies the requirements of grading Zone II as per IS:383-2016.

PHYSICAL TEST REPORT ON FINE AGGREGATE SAMPLE (Manufactured Sand)

Source of sample

: Sample supplied by the customer

Customer's Reference

: Letter Dated 11.04.2017

UIN Project\*

: 17011488

Sample Identification\*

: SAV, Nagarcoil

Date of test

: (0-4) SAV OLD PLANT

Condition of sample

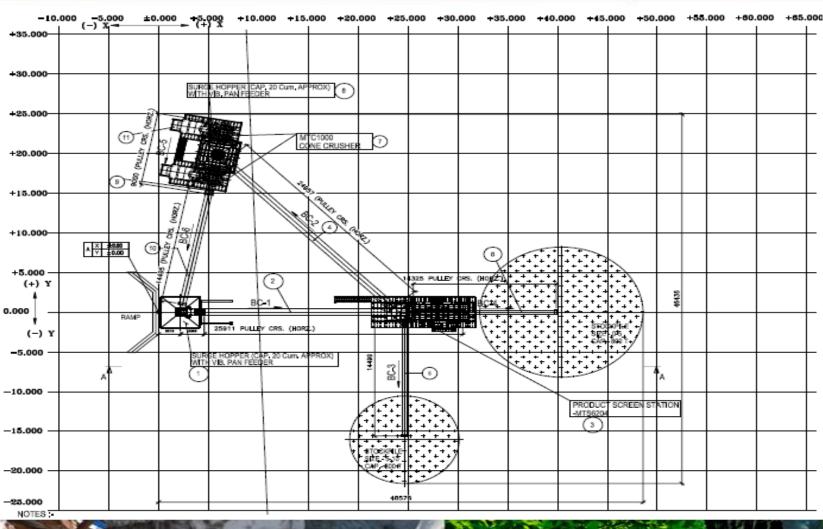
: 15.04.2017 : Satisfactory

Test Method

: IS:2386 (Part I)-1963 (Reaffirmed - 2011)

#### SIEVE ANALYSIS:

8 A C 11 11 4


| IS Sieve<br>Designation | Cumulative Percent<br>Retained Passing |      |        | on as per IS:<br>(Percent | 383-2016 for Fi<br>age Passing) | ne Aggregate |
|-------------------------|----------------------------------------|------|--------|---------------------------|---------------------------------|--------------|
| 0.000                   |                                        |      | Zone-I | Zone II                   | Zone-III                        | Zone IV      |
| 10.00 mm                | 0                                      | 100  | 100    | 100                       | 100                             | 100          |
| 04.75 mm                | 0.1                                    | 99.9 | 90-100 | 90-100                    | 90-100                          | 95-100       |
| 02.36 mm                | 12.5                                   | 87.5 | 60-95  | 75-100                    | 85-100                          | 95-100       |
| 01.18 mm                | 38.7                                   | 61.3 | 30-70  | 55-90                     | 75-100                          | 90-100       |
| 600 microns             | 56.7                                   | 43.3 | 15-34  | 35-59                     | 60-79                           |              |
| 300 microns             | 71.1                                   | 28.9 | 5-20   | 8-30                      |                                 | 80-100       |
| 150 microns             | 82.6                                   | 17.4 | 0-10   | 0-10                      | 12-40<br>0-10                   | 0-15         |

REMARKS: The sample supplied satisfies the requirements of grading Zone II as per IS:383-2016.

According to IS:383-2016 for Crushed Stone Sands, the permissible limit on 150 micron IS Sieve is increased to 20%. This does not affect the 5% allowance permitted in Cl. 6.3

#### **100 TPH ADD ON MODULAR SAND CIRCUIT**





### **100 TPH ADD ON MODULAR SAND CIRCUIT**





### **Manufacturing Sand from -63mm Feed**











### **Sand Washing / Classification**



- Why to wash: To remove particles ranging from 0-150micron, clay, metals, rubber, plastics, organic, paper, polystyrene etc.
- What to wash: Washing of natural sand, M-sand, Crusher dust, Silica sand, iron ore and C&D waste is done.
- How to wash: Can be done by either air or water medium. But water is considered as efficient because of its dipolar and viscous characteristics.

| C      | Material     | Contaminants to be removed                                  |
|--------|--------------|-------------------------------------------------------------|
| Ž      | Natural Sand | Silt, clay, mica & organic matters                          |
| SHI    | M-Sand       | Majorly silt & clay                                         |
| $\sim$ | Silica sand  | Silt ,clay and oversize                                     |
| M.A.   | Iron ore     | silica                                                      |
|        | C&D waste    | clay, metals, rubber, plastics, organic, paper, polystyrene |

### **Sand Washing / Classification**







Terex T150 (Bucket wheel dewatering + Augur screw)

Fine Master FM200DF Cyclone Type washing Plants

### **Sand Washing & Water Recovery System**





### **Sand Washing & Water Recovery System**





#### ADDING VALUE TO MATERIALS<sub>22</sub>



- Screen Mesh Size: 800micron/600 Micron /400 Micron
- Capacity Handled: 80mtph to 50 mtph depending on feed source











#### For -75micron removal







| <b>⊠</b>   <b>⅓</b> •7 | U ♣ ♥   ₹                                                                                                          | RE: Some improvements need in HFS plant                    |
|------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| File                   | Message McAfee E-mail Scan                                                                                         |                                                            |
|                        | warded this message on 11/29/2016 5:50 PM.<br>Fre to download pictures. To help protect your privacy, Outlook prev | ented automatic download of some pictures in this message. |
| From:                  | ☐ Kumaresan R Ramalingam <srkumaresan@intecc.com></srkumaresan@intecc.com>                                         |                                                            |
| To:                    | 🗆 Sati, Tribhuwan; 🔲 Sudhansukumar Muduli; 🗀 Stalinraj R                                                           |                                                            |
| Cc:                    | 🗌 Kumar, Mahendra; 🗀 Banerjee, Soumitra; 🗀 Singh, Karan                                                            |                                                            |
| Subject:               | RE: Some improvements need in HFS plant                                                                            |                                                            |
|                        |                                                                                                                    |                                                            |
|                        |                                                                                                                    |                                                            |
| Dear Sir,              |                                                                                                                    |                                                            |
| Find the bel           | ow test report of HFS plant.                                                                                       |                                                            |

| HFS Testing Report (CP-1)                    |                   |                  |                                |                 |                   |  |
|----------------------------------------------|-------------------|------------------|--------------------------------|-----------------|-------------------|--|
| Belt Date 10.11.16 Sample Wt of Sample in gm |                   |                  | 602                            |                 |                   |  |
| Sieve<br>(mm)                                | Wt of<br>Retained | % of<br>Retained | % of<br>Cummlative<br>Retained | % of<br>Pessing | Limit<br>Zone -II |  |
| 10.0                                         | 0                 | 0                | 0                              | 100             | 100               |  |
| 4.75                                         | 49                | 8.14             | 8.14                           | 91.86           | 90-100            |  |
| 2.36                                         | 81                | 13.46            | 21.60                          | 78.40           | 75-100            |  |
| 1.18                                         | 220               | 36.54            | 58.14                          | 41.86           | 55-90             |  |
| 0.600                                        | 72                | 11.96            | 70.10                          | 29.90           | 35-59             |  |
| 0.300                                        | 23                | 3.82             | 73.92                          | 26.08           | 8,-30             |  |
| 0.150                                        | 30                | 4.98             | 78.90                          | 21.10           | 0-20              |  |
| 0.075                                        | 31                | 5.15             | 84.05                          | 15.95           | 0-15              |  |

| Remark: | Material | feed from | CP 4 PLANT |
|---------|----------|-----------|------------|
|---------|----------|-----------|------------|

| HFS Testing Report (CP-1) |                   |                  |                                |                 |                   |  |
|---------------------------|-------------------|------------------|--------------------------------|-----------------|-------------------|--|
| Date 1                    | 5.11.16           | Belt<br>Sample   | Wt of Sample in gm             |                 | 620               |  |
| Sieve<br>(mm)             | Wt of<br>Retained | % of<br>Retained | % of<br>Cumulative<br>Retained | % of<br>Pessing | Limit<br>Zone -II |  |
| 10.0                      | 0                 | 0                | 0                              | 100             | 100               |  |
| 4.75                      | 78                | 12.58            | 12.58                          | 87.42           | 90-100            |  |
| 2.36                      | 121               | 19.52            | 32.10                          | 67.90           | 75-100            |  |
| 1.18                      | 200               | 32.26            | 64.35                          | 35.65           | 55-90             |  |
| 0.600                     | 55                | 8.87             | 73.23                          | 26.77           | 35-59             |  |
| 0.300                     | 20                | 3.23             | 76.45                          | 23.55           | 8,-30             |  |
| 0.150                     | 26                | 4.19             | 80.65                          | 19.35           | 0-20              |  |
| 0.075                     | 30                | 4.84             | 85.48                          | 14.52           | 0-15              |  |

| Remark: | A Company of the Comp | feed from | <br>**** |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |

|            | Feed material Testing Report (CP-4) |                  |                                |              |                   |  |  |
|------------|-------------------------------------|------------------|--------------------------------|--------------|-------------------|--|--|
| Dat        | te 10.11.16                         | Belt<br>Sample   | Wt of Sample in gm             |              | 550               |  |  |
| Sieve (mm) | Wt of Retained                      | % of<br>Retained | % of<br>Cumulative<br>Retained | % of Pessing | Limit<br>Zone -II |  |  |
| 10.0       | 0                                   | 0                | 0                              | 100          | 100               |  |  |
| 4.75       | 27                                  | 4.91             | 4.91                           | 95.09        | 90-100            |  |  |
| 2.36       | 40                                  | 7.27             | 12.18                          | 87.82        | 75-100            |  |  |
| 1.18       | 82                                  | 14.91            | 27.09                          | 72.91        | 55-90             |  |  |
| 0.600      | 38                                  | 6.91             | 34.00                          | 66.00        | 35-59             |  |  |
| 0.300      | 41                                  | 7.45             | 41.45                          | 58.55        | 8,-30             |  |  |
| 0.150      | 76                                  | 13.82            | 55.27                          | 44.73        | 0-20              |  |  |
| 0.075      | 75                                  | 13.64            | 68.91                          | 31.09        | 0-15              |  |  |

Remark: sample of CP 4 PLANT

| Feed material Testing Report (CP-4) |                |                  |                                |              |                   |  |
|-------------------------------------|----------------|------------------|--------------------------------|--------------|-------------------|--|
| Dat                                 | te 14.11.16    | Belt<br>Sample   | Wt of San                      | nple in gm   | 550               |  |
| Sieve (mm)                          | Wt of Retained | % of<br>Retained | % of<br>Cumulative<br>Retained | % of Pessing | Limit<br>Zone -II |  |
| 10.0                                | 0              | 0                | 0                              | 100          | 100               |  |
| 4.75                                | 23             | 4.18             | 4.18                           | 95.82        | 90-100            |  |
| 2.36                                | 52             | 9.45             | 13.64                          | 86.36        | 75-100            |  |
| 1.18                                | 122            | 22.18            | 35.82                          | 64.18        | 55-90             |  |
| 0.600                               | 60             | 10.91            | 46.73                          | 53.27        | 35-59             |  |
| 0.300                               | 41             | 7.45             | 54.18                          | 45.82        | 8,-30             |  |
| 0.150                               | 61             | 11.09            | 65.27                          | 34.73        | 0-20              |  |
| 0.075                               | 65             | 11.82            | 77.09                          | 22.91        | 0-15              |  |

Remark: sample of CP 4 PLANT

HFS Testing Report (CP-1)

### **CI. 4.2 - Manufactured Aggregates**



| Manufactured Coarse<br>Aggregate | Extent of Utilization  |                |                           |
|----------------------------------|------------------------|----------------|---------------------------|
|                                  | Reinforced<br>Concrete | Plain Concrete | Lean Concrete < M15 Grade |
| Recycled Concrete Aggregate      | 20%<br>upto M25 Grade  | 25%            | 100%                      |
| Recycled Aggregate               | Nil                    | Nil            | 100%                      |
| Iron Slag Aggregate              | 25%                    | 50%            | 100%                      |
| Steel Slag Aggregate             | Nil                    | 25%            | 100%                      |
| Bottom Ash                       | Nil                    | Nil            | 25%                       |

### **CI. 4.2 - Manufactured Aggregates**



| Manufactured                | Extent of Utilization  |                |                              |
|-----------------------------|------------------------|----------------|------------------------------|
| Fine Aggregate              | Reinforced<br>Concrete | Plain Concrete | Lean Concrete<br>< M15 Grade |
| Recycled Concrete Aggregate | 20%<br>upto M25 Grade  | 25%            | 100%                         |
| Iron Slag Aggregate         | 25%                    | 50%            | 100%                         |
| Steel Slag Aggregate        | Nil                    | 25%            | 100%                         |
| Copper Slag Aggregate       | 35%                    | 40%            | 50%                          |

#### **Notes about Utilization**





The concrete rubble has to be properly processed, including **scrubbing** to remove the adhered hydrated cement as much as possible

The broad steps involved in the manufacture of aggregates from **C&D** waste may be:


Dry and Wet processing.



Desirable to source the Recycled Concrete Aggregates from sites being redeveloped for use in the same site.















At Terex, "Works For You" is more than a slogan - it's a promise